

How Do We Reduce Bias in Aviation Selection?

Diane L. Damos, Ph.D.

Damos Aviation Services, Inc.

Overview

- Discuss adverse impact on women during selection for training or hiring as pilots
- Describe methods for identifying the source of the adverse impact
- Suggest ways to decrease adverse impact when assessing abilities known for large male/female differences
- Identify abilities with potentially little adverse impact

Literature Review

Reviewed pilot selection studies reporting batteries

- 1996 to present
- Discuss tests in detail
- 13 Western European, British, and US studies
 - US and British studies are military
 - Western European are mainly civilian

Where are the Adverse Impact Data?

- No European or British data
- No US civilian data
- US Air Force
 - Air Force Officer Qualifying Test (AFOQT)
 - Apparatus tests

Discrimination

- Definition—failure to treat all persons equally when no reasonable distinction can be found between those favored and those not favored (Black's Law Dictionary)
 - Deliberate

Disparate (Adverse) Impact

 Definition—substantially different rate of selection in hiring that works to the disadvantage of members of a race, sex or ethnic group. It is an unwanted or unanticipated repercussion caused by a specific practice

Accidental

Bias and Fair

- Bias—psychometric properties of the test
- Fair—judgement, may be based on adverse impact

Interpreting Results

Cohen's d

- Measure of effect size
- Dimensionless
- Correction for unequal n's
- Effect sizes
 - ▶ d = 0.2 small
 - d = 0.5 medium
 - d = 0.8 large (half of areas do not overlap)

Structure of the Talk

- High altitude
 - Many tests in the battery show large d's
 - How to interpret this
 - ✓ Battery level
 - 🗸 Test level
- Low altitude
 - Which categories of tests show bias?
 - Which categories of tests show little or no bias?

Background

US Air Force AFOQT

- Updated ≈ every 7 years
- General intelligence test/academic
- Version T is current
 - 16 tests
 - 5 composites—Verbal, Quantitative, Academic (Verbal + Quantitative), Pilot, Navigator-Technical

Background

US Air Force Apparatus tests

- Intermittent use
 - > 1942-1955
 - ➢ BAT−1992 to 2006
 - TBAS—2006 to present day
 - Hand tracking
 - Foot tracking
 - ✓ Timesharing

Why do so few women pass the pilot selection process?

AFOQT Means

- Sample—Officer candidates
 - Male = 219, 887
 - Females = 50, 081
- Mean differences?
 - Males > females on 15 of 16 AFOQT tests
 - No difference on Verbal Analogies
 - Composites ranged from d = 0.08 (verbal) to 0.69 (pilot)

- What is the cause? Psychometric problem? Real difference? Something else?
 - Battery level
 - Confirmatory factor analyses by gender. Want to see:
 - Same number and identity of factors
 - ✓ Factors account for the same proportions of total and common variance

- Is AFOQT factor structure the same for male versus female officer candidates
 - Factor analysis showed identical factor structure, prop of variance accounted for very similar
- Something else?
 - Correct population?

AFOQT Means—Pilot candidates

- Sample—Pilot Officer candidates
 - Male = 9, 239
 - Females = 237
- Mean differences?
 - Males > females on 6 of 16 AFOQT tests
 - Mean difference d = 0.08
 - Composites ranged from d = -0.48 (verbal) to 0.20 (navigator/technical); mean d = 0.10
 - Male composites > female composites only on navigator/technical

- BAT—Pilot candidates only
 - 4 tests
 - 2 psychomotor
 - > STM
 - Timesharing test—tracking + STM
 - Candidates
 - Male = 4,888
 - Females = 465

- BAT—Pilot candidates only
 - Mean differences?
 - Males > females on 4 of 4 tests
 - STM d = 0.10
 - Psychomotor composite d = 1.68
 - Timesharing composite (includes tracking) d = 1.04

- Is BAT factor structure the same for male versus female pilot candidates?
 - Factor analysis showed identical factor structure, prop of variance accounted for very similar

Individual Test Level

Differential predictive validity

Regression for males and females separately

Slope differences?

Test Score

Individual Test Level

Differential predictive validity

Regression for males and females separately

- Slope differences? Yes!!!
 - ✓ Statisticians say "Do item analysis and change as necessary"
 - ✓ Works if have large samples and lots of time. Not for apparatus tests.

Check homoscedasticity

Test Score

Individual Test Level

Differential predictive validity

- Regression for males and females separately
 - Slope differences? Yes!!!
 - Statistically correct for heteroscedasticity

Individual Test Level

Differential predictive validity

Regression for males and females separately

Slope differences?

✓ "No"

Test Score

Individual Test Level

Regression for males and females separately

Slope differences?

✓ If "No"

• Test is not psychometrically biased

- Compared male versus female pilot officer candidates
- AFOQT—Pilot composite
 - Instrument Comprehension
 - Perceptual Speed Test
 - Aviation Information
 - Quantitative

TBAS

- Tracking (hand, foot)
- Timesharing (hand and foot)

- N = 14,214
- Male 12, 451; Female 1,763
- AFOQT pilot composite d = 0.67
- TBAS tracking results
 - Hand d = 1.52
 - Timesharing scores
 - Hand d = 1.45
 - Foot d = 0.32

Predictive validity

Male 6304; Female 540

Score	R with specialized Primary training
PCSM Score	
Female	0.383
Male	0.382
AFOQT Pilot	
Female	0.354
Male	0.351

- Batteries—No differences
- Predicative validity is the same
- Conclusion: psychometrically sound, but..
- Still have large male-female differences
- Real differences? Something else?
- What to do?

Structure of the Talk

- High altitude
- Low altitude
 - Tests of which abilities show large male-female differences?
 - Tests of which abilities show small or no differences?

What Tests Are We Using?

Most common tests (13 batteries)

- Psychomotor (hands)—10 *
- Spatial—10 *
- Quantitative—8
- Personality—7
- Perceptual speed—6
- Multiple-task (timesharing)—5

Category—Psychomotor

- What are the problems with these tests?
- What are we testing?
 - Eye-hand coordination
 - Eye-hand-foot coordination
 - Tracking ability
- Fleishman taxonomy
 - Multi-limb coordination
 - Precision control
 - Rate control
 - Response orientation
- No eye-hand coordination ability, no tracking ability
- What is being tested?

Category—Psychomotor

Carretta (1997) psychomotor composite d = 1.68 (hand, hand)

Trent & Aguilar (2020)

- Hand tracking d = 1.52
- Timesharing scores
 - Hand d = 1.45
 - Foot d = 0.32
- Historical data?
- Damos' calculations (Melton, 1947) WASP
 - Two-hand coordination (hand) d = 1.08
 - Rudder control (feet) d = -0.82

Category—Spatial

Men are better than women, but....

- Mental rotation (men v women, pilots vs non pilots) (Verde et al.,2013).
 Matched on age
- Men faster than women
 - Pilots faster than nonpilots
 - No significant difference between male and female pilots

Category—Spatial

- Three factors (Carroll, 1993)
 - Spatial Relations
 - Spatial Orientation
 - Spatial Visualization
- D'Oliveira (2004, Study 1)
 - Men better than women on Spatial Relations
 - Not different on Spatial Visualization or dynamic spatial ability
- Fourth factor? Dynamic spatial ability (D'Oliveira, 2004)
 - Not enough data yet

Promising—Perceptual Speed

- Neglected topic. Very little gender research
- Literature confusing. Why?
 - Ackerman, Beier & Boyle (2002) 4 different types
 - Pattern matching—recognition of simple pattern
 - Scanning—scanning, comparison, and lookup
 - Memory—STM demands (digit/symbol)
 - <u>Complex</u>—increased memory load, scanning, and perhaps some spatial

Promising—Perceptual Speed

Gender research

- Ackerman, Kanfer & Goff (1995) just p<.05 for complex
- Damos & Gould (2009) no sign difference ab initios
- Hoermann & Damos (2019)
 - Ab initio males > females p = .018 on #Cor. No diff on #W
 - Licensed pilots no difference on either
- WASPS d = -0.25
 - Outscored men on 10/10

Promising—Timesharing

Carretta (1997) Psychomotor composite

- Psychomotor composite (hand, hand) d = 1.68
- Multiple-task composite (includes psychomotor) d = 1.04

Trent & Aguilar (2020)

- Hand tracking d = 1.52
- Timesharing scores
 - Hand d = 1.45
 - Foot d = 0.32

Promising—Timesharing

- Cognitive psychology "myth:" Women are better timesharers than men
- What do they mean?
 - Media switching—one task involves media
 - Scheduling of large tasks

Promising Tests—Timesharing

Cognitive laboratory task

- Hirsch, Koch, Karbach (2019)
 - > 48 men, 48 women
 - No significant differences on age, mental health physical health, STM capacity, intelligence. Women faster processing speeds, d = -0.54; men faster mental rotation, d = 0.58
 - Digit parity task, letter vowel/consonant
 - Single task, mixed blocks, dual-task
 - Switching time, decrements, concurrent speed and accuracy—No gender effects

Promising Tests—Timesharing

Individual differences in fine-grained analyses

- Response strategy
 - Damos, Smist & Bittner (1983)
 - Bruning & Manzey (2018)
- Individual differences in decrements
 - Watson & Strayer (2010) Super taskers (90 males, 110 females; 3 v 2)

Summary

- Many batteries used in pilot selection have multiple tests with large gender effects
 - Batteries seem to be working the same for men and women
 - Tests seem to have same predictive validity
 - Source of differences on tests
 - Practice? Exposure?
 - Real differences?

Summary

• What to do?

Improve test selection for commonly used tests

- Psychomotor
 - Carefully constructed to assess known attribute
 - ✓ Foot tracking?
 - Examine practice by gender effects
- Spatial
 - ✓ Which abilities do we need to test?

Summary

What to do?

Start investigating promising tests

- Perceptual speed
 - Use complex perceptual speed tests
- Timesharing
 - ✓ Response strategies
 - Individual differences in decrements